• zapisuje wszystkie wzory z rozdziału Potęgi i pierwiastki oraz opisuje je poprawnym językiem matematycznym • oszacowuje bez użycia kalkulatora wartości złożonych wyrażeń zawierających działania na potęgach o wykładniku naturalnym oraz pierwiastkach Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n–tą potęgę:(mnożymy a przez siebie tyle razy, ile wynosi n) Pierwiastkiem arytmetycznym stopnia n z liczby a ≥ 0 nazywamy liczbę b ≥ 0 taką, że bn =a. W szczególności, dla dowolnej liczby a zachodzi równość: √a2 = |a| Jeżeli a 0 i b > 0 , to zachodzą równości: ar • a = ar + s (ar) = ar • s (a • b)r = ar • br Jeżeli wykładniki r, są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb a ≠ 0 i b ≠ 0. Źródło: Centralna Komisja Egzaminacyjna, Potęga o wykładniku ujemnym. Opis. Zadanie 1. Oblicz: Jeśli w wykładniku potęgi znajduje się minus ( potęga o wykładniku ujemnym) to aby go usunąć należy odwrócić podstawę tej potęgi. W przypadku gdy liczbą podnoszoną do potęgi ujemnej jest ułamek stosujemy wzór: 0punktów mistrzowskich do zdobyciaPodsumowanie zdobytych umiejętnościPotęgowanieUcz się sam(a)!ĆWICZENIEPotęgowanieRozwiąż co najmniej 5 z 7 pytań, aby przejść na następny poziom!Quiz 1Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 240 punktów 2Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 320 punktów 3Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 400 punktów 4Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 320 punktów 5Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 240 punktów swoje umiejętności w zakresie wszystkich tematów należących do tego rozdziału i zbierz 1900 punktów tym dzialeZrozumienie i rozwiązywanie wyrażeń potęgowych, pierwiastków i zapisu wykładniczego bez użycia algebry. Działania na pierwiastkach. Np. Przypominam, że każda równość jest prawdziwa w obie strony. Korzystając z tych wzorów, przekształcamy pierwiastki. Przykłady. Ważne! Pierwiastki można przedstawiać w innej postaci, a mianowicie wyłączając czynnik przed znak pierwiastka. Przykłady. Można też włączać czynnik pod znak wykorzystanie wzorów na potęgi i pierwiastki - matematyka, matura MATERIAŁ MATURALNY > potęgi i pierwiastki WYKORZYSTANIE WZORÓW Matematyka – matura - potęgi: wzory na potęgi Wszystkie wzory na potęgi i pierwiastki zostały omówione w dziale „podstawy” (PODSTAWY – potęgi i pierwiastki (1) – wzory na potęgi i pierwiastki).W przedstawionych (w dziale PODSTAWY) zadaniach, nie była wymagana umiejętność przekształcania wyrażeń z potęgami w taki sposób, aby było możliwe wykorzystanie wzorów. Oczywiście ta umiejętność jest niezbędna na poziomie z przedstawionych wcześniej wzorów, to trzy pierwsze wzory na potęgi: Zakładają one, że w podanych potęgach mamy taką samą podstawę i do tego będziemy dążyć w wyrażeniach, gdzie w ich pierwotnej formie, nie jest możliwe zastosowanie żadnego wzoru. Przykład: W celu umożliwienia sobie zastosowania jakiegoś wzoru, przekształcimy poszczególne potęgi, aby otrzymać taką samą korzystać z czwartego wzoru na potęgi: W pierwszej kolejności należy przeanalizować przykład i sprawdzić, które z potęg mają podstawy posiadające wspólny dzielnik: Po ustaleniu wspólnego dzielnika, przekształcamy wszystkie potęgi tak, aby w podstawie miały wybrany przez nas dzielnik. Odbywa się to w dwóch krokach:I. Zapisujemy podstawy potęg jako potęgę wspólnego dzielnika (w przedstawionym przykładzie – 2): II. Wykorzystujemy czwarty wzór na potęgi: Po wykonaniu powyższych przekształceń możemy zastosować trzy pierwsze wzory na potęgi: Powyższe przekształcenie nie jest jedynym, jakie będziemy wykorzystywać, aby uzyskać tą samą podstawę. W zadaniach mogą pojawiać się pierwiastki oraz ułamki. Jak zamienić pierwiastek na potęgę przedstawiliśmy w poprzednim podrozdziale ( wykładnik wymierny). Przykład: Aby „pozbyć” się ułamków, wystarczy wykonać obracanie (ułamki dziesiętne należy zamienić na ułamki zwykłe), pamiętając o tym, że musimy zamienić znak potęgi. Przykład: Przedstawimy jeden „złożony” przykład, w którym będziemy musieli wykorzystać wszystkie trzy rodzaje W przypadku jakichkolwiek pytań zapraszamy na nasze forum :) Jesteś tutaj: Szkoła → Trygonometria → Wzory trygonometryczne Definicje funkcji trygonometrycznych w trójkącie prostokątnym Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem .
Potęga Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n -tą potęgę: a n = a · … · a ⏟ n razy Pierwiastek arytmetyczny Pierwiastkiem arytmetycznym a n stopnia n z liczby a ≥ 0 nazywamy liczbę b ≥ 0 taką, że b n = a . W szczególności, dla dowolnej liczby a zachodzi równość: a n = | a | Jeżeli a ≤ 0 oraz liczba n jest nieparzysta, to a n oznacza liczbę b 0 : a − m n = 1 a m n Niech r s będą dowolnymi liczbami rzeczywistymi. Jeśli a > 0 i b > 0 , to zachodzą równości: a r · a s = a r + s a r s = a r · s a r a s = a r − s ( a · b ) r = a r · b r ( a b ) r = a r b r Jeżeli wykładniki r s są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb a ≠ 0 b ≠ 0 .

Działania na pierwiastkach i potęgach.Potęga o wykładniku wymiernym.Pierwiastek arytmetyczny.Pigułka matematyczna.Matematyka w pigułce. Sprawdź serwis MatMat

Potęgowanie Potęga to uogólniony zapis wielokrotnego mnożenia elementu przez siebie. Zapis xⁿ oznacza n-krotne mnożenie przez siebie x. xⁿ = x • x • x • … • x, gdzie n = ilość x Potęgowany element (n) nazywamy podstawą, a liczba mnożeń, zapisywana u góry (w tzw. indeksie górnym) to wykładnik potęgi. Przykład: 4³ = 4 • 4 • 4 = 64 x° = 1 gdy x ≠ 0 Przykład: 8° = 1 X¹ = X Przykład: 2¹ = 2 Druga potęga to kwadrat danej liczby (x²), trzecia to sześcian (x³). Przykład: gdy x ≠ 0 Przykład: Przykład: (x + y)ⁿ = xⁿ • yⁿ Przykład: (6 • 2)² = 6² • 2² = 36 • 4 = 144 jeśli y ≠ 0 Przykład: gdy x ≠ 0 Przykład: . Pierwiastkowanie Pierwiastkowanie to działanie odwrotne do potęgowania. Symbolem pierwiastka jest .Pierwiastkiem stopnia n liczby a jest liczba b. Zapisujemy to w ten sposób: a – liczba podpierwiastkowa n – stopień pierwiastka (jeśli pierwiastek jest kwadratowy to pole jest puste) b – pierwiastek n-tego stopnia z a (czyli wynik pierwiastkowania) Pierwiastkiem liczby 1 jest liczba 1, bo 1 • 1 = 1 Pierwiastkiem liczby 4 jest liczba 2, bo 2 • 2 = 4 Pierwiastkiem liczby 9 jest liczba 3, bo 3 • 3 = 9 Pierwiastkiem liczby 16 jest liczba 4, bo 4 • 4 = 16 Pierwiastkiem liczby 25 jest liczba 5, bo 5 • 5 = 25 Pierwiastkiem liczby 36 jest liczba 6, bo 6 • 6= 36 ...itd. Zapisujemy to w ten sposób: = 1, bo 12 = 1 = 2, bo 22 = 4 = 3, bo 32 = 9 = 4, bo 42 = 16 = 5, bo 52 = 25 = 6, bo 62 = 36 ...itd. Pamiętajmy, że , ponieważ 00 to symbol nieoznaczony. Własności (prawa działań na pierwiastkach) Pierwiastek stopnia drugiego (n = 2) to pierwiastek kwadratowy. Pierwiastek stopnia trzeciego (n = 3) to pierwiastek sześcienny. Zapisujemy go tak: . Pierwiastek czwartego stopnia (n = 4) zapisujemy: . z plakatu w szkole. od znajomych. inne. UWAGA: Aby umieścić komentarz wyślij SMS. na numer 7136 o treści KOD.MATZOO. Koszt SMSa to 1 zł (+ 0,23xł VAT) W odpowiedzi otrzymasz SMS z kodem do wpisania w poniższe pole. Opłacenie smsa nie jest jednoznaczne z pojawieniem się komentarza na stronie. Komentarz pojawi się po akceptacji moderatora.
Wyświetlane 1-6 z 6 zadań Potęga o wykładniku ujemnym Zadanie 1 Oblicz: Jeśli w wykładniku potęgi znajduje się minus ( potęga o wykładniku ujemnym) to aby go usunąć należy odwrócić podstawę tej Dzielenie potęg o tym samym wykładniku Zadanie 1 Korzystając ze wzoru na dzielenie (iloraz) potęg o tych samych wykładnikach zapisz w możliwie najprostszej postaci. Dzieląc potęgi o tych samych wykładnikach… Mnożenie potęg o tym samym wykładniku Zadanie 1 Korzystając ze wzoru na mnożenie potęg o tym samym wykładniku zapisz w możliwie najprostszej postaci. Mnożąc potęgi o tych samych wykładnikach korzystamy… Dzielenie potęg o tej samej podstawie Zadanie 1 Przedstaw w postaci jednej potęgi. Dzieląc potęgi o tych samych podstawach korzystamy ze wzorów: Zgodnie z powyższymi wzorami podstawę potęgi przepisujemy bez… Mnożenie potęg o tej samej podstawie Zadanie 1Przedstaw w postaci jednej potęgi. Mnożąc potęgi o tych samych podstawach korzystamy ze wzoru:Zgodnie z powyższym wzorem podstawę potęgi przepisujemy bez zmian, natomiast… Dodawanie i odejmowanie pierwiastków Zadanie 1 Oblicz: Pierwiastki możemy dodawać do siebie lub odejmować tylko wtedy, gdy są one tego samego stopnia i mają tę samą liczbę podpierwiastkową. Mówimy,…

POTĘGI I PIERWIASTKI umie zapisać liczbę w postaci potęgi pierwiastka z iloczynu i ilorazu do umie określić znak potęgi, nie wykonując obliczeń umie obliczyć wartość wyrażenia arytmetycznego zawierającego potęgi rozumie powstanie wzoru na mnożenie i dzielenie potęg o tych samych podstawach

szkolnaZadaniaMatematyka To pytanie ma już najlepszą odpowiedź, jeśli znasz lepszą możesz ją dodać Najlepsza odpowiedź Herhor 1)a)...= (3a)^2 +2*3a*√3 +(√3)^2 =9a^2 +6a√3+3b)...= (2√2)^2 -2*2√2*5x +(5x)^2 = 8 -20√2 x +25x^22a)=√(4*3) +√(25*3) +√(4*6) +√(16*6) =2√3+5√3+2√6+4√6 =7√3+8√6b)...= 5*1 -3*4+2*11 = 5-12+22 = ...= 4^{1/3}*4^{2/3} +3^{1/3}*3^{2/3} = 4^{1/3+2/3} +3^{1/3+2/3|==4+3=7b) ...= 5^{-3}*5^{6/3} *5^{4*?} = 5^{-3+2+4*?} = 5^4*?-1}=... Nie wiem,co w wykładniku przy 625 :(Pozostałe zrób podobnie, tzn. naśladując METODĘ o 23:16 Wzory ViØte™a: 12 12 bc xx xx aa − += ⋅ = 8. LOGARYTMY Niech 0a > i 1a ≠ . Logarytmem loga c liczby 0c > przy podstawie a nazywamy wykładnik b potęgi, do której należy podnieść podstawę a, aby otrzymać liczbę c: log b bcac=⇔=a Równoważnie: acloga c = Dla dowolnych liczb 0x > , 0y > oraz r zachodzą wzory: Pierwiastki spędzają sen z powiek niejednemu uczniowi. Czy rzeczywiście pierwiastkowanie jest trudne? Niekoniecznie, pod warunkiem, że zapamiętamy jedną regułę: by obliczyć pierwiastek z danej liczby, musimy znaleźć liczbę, która podniesiona do potęgi drugiej, daje liczbę pod pierwiastkiem. Brzmi skomplikowanie? Sprawdźmy, jak to działa na przykładach. Zobacz film: "Wysokie oceny za wszelką cenę" spis treści 1. Pierwiastkowanie - co to jest? 2. Pierwiastki - ważne wzory 1. Pierwiastkowanie - co to jest? Pierwiastkowanie to odwrotne działanie do potęgowania. Aby zrozumieć, czym są pierwiastki, jak wygląda ich zapis i jak je obliczyć, zaczniemy od wyjaśnienia, co oznaczają poszczególne symbole i omówienia najważniejszych wzorów. Podstawowy wzór na pierwiastki to: Wzór na obliczenie pierwiastka Powyższy zapis odczytujemy: Pierwiastek n-tego stopnia z liczby a równa się b, gdy b do potęgi n-tej równe jest a". W tym zapisie: n – to stopień pierwiastka, a – liczba podpierwiastkowa, b – pierwiastek n-tego stopnia z liczby a, wynik pierwiastkowania. Zobacz także: Liczby całkowite - czyli jakie? Przykłady Pierwiastki możemy także określić dla liczb zespolonych. W matematyce wyższej pierwiastki zespolone z jedynki odgrywają bardzo istotną rolę. Pierwiastki z jedynki nazywamy także liczbami de Moivre’a dla uhonorowania francuskiego matematyka Abrahama de Moivre’a. Pierwiastki n-tego stopnia z jedności są na płaszczyźnie zespolonej wierzchołkami wielokąta foremnego o n bokach, które są wpisane w okrąd jednostkowy. Jego jeden wierzchołek leży w punkcie 1. Pierwiastki n stopnia z 1 na płaszczyźnie zespolonej (Wikipedia) Wierzchołki dzielą okąg na n równych części. Zobacz także: Średnia ważona - co to jest? 2. Pierwiastki - ważne wzory Obliczanie pierwiastka z danej liczby to dopiero początek. Poniżej przeanalizujmy inne istotne wzory związane z pierwiastkowaniem. Wzór na pierwiastek pierwiastka: Wzór na pierwiastek pierwiastka Z poniższego wynika, że a to liczba większa lub równa 0. Z kolei n i m są liczbami naturalnymi (z wyjątkiem liczb 0 i 1). Wzór na sumę pierwiastków: Wzór na sumę pierwiastków Zapis oznacza, że liczby a oraz b są większę lub równe 0. Zobacz także: Jak obliczyć funkcje trygonometryczne? Wzór na mnożenie pierwiastków: Wzór na mnożenie pierwiastków A oraz b to liczby, które są większe lub równe 0. Z kolei n oraz m to liczby naturalne z wyłączeniem liczb 0 i 1. Wzór na dzielenie pierwiastków: Wzór na dzielenie pierwiastków W powyższym zapisie: a jest liczbą większą lub równą 0. B to liczba większa od 0. N oraz m to liczby naturalne z wyłączeniem liczb 0 i 1. Wzór na potęgę pierwiastka: Wzór na potęgę pierwiastka Gdzie a jest liczbą większą lub równą 0. N i m to liczby naturalne z wyłączeniem liczb 0 i 1. Wzór na wartość bezwzględną pierwiastków: Wzór na wartość bezwzględną pierwiastków Oznacza to, że liczby a i b są większe bądź równe 0. Zobacz także: Jak obliczyć pierwiastek z liczby? polecamy
5) przekształca proste wzory, aby wyznaczyć zadaną wielkość we wzorach geometrycznych (np. pól figur) i fizycznych (np. dotyczących prędkości, drogi i czasu). Praca klasowa i jej omówienie. 2 6. POTĘGI I PIERWIASTKI 16 h Potęga o wykładniku naturalnym. 2 I. Potęgi o podstawach wymiernych. Uczeń:
PODSTAWY > Potęgi i pierwiastki (1) WZORY NA POTĘGI I PIERWIASTKIZagadnienia: matematyka - podstawówka, gimnazjum - potęgi i pierwiastki, wzory i ich wykorzystanie. Do wzorów na potęgi i pierwiastki, nie podchodzimy do końca jak do wzorów. Pokazują nam one, jakich uproszczeń możemy użyć w trakcie obliczeń. Czasami są niezbędne, bo bez ich wykorzystania, nie bylibyśmy wstanie wykonać działania (np. zabrakłoby miejsca na wyświetlaczu kalkulatora). Brak ich wykorzystania w zadaniach, w których jest to możliwe, zarówno podczas sprawdzianów w gimnazjum i liceum jak i podczas matury, zaowocuje zmniejszeniem liczby punktów przyznawanych za dane Wszystkie wzory można stosować w obie strony. W przypadku jakichkolwiek pytań zapraszamy na nasze forum :) .
  • li39aawcj6.pages.dev/206
  • li39aawcj6.pages.dev/375
  • li39aawcj6.pages.dev/408
  • li39aawcj6.pages.dev/385
  • li39aawcj6.pages.dev/315
  • li39aawcj6.pages.dev/623
  • li39aawcj6.pages.dev/973
  • li39aawcj6.pages.dev/898
  • li39aawcj6.pages.dev/876
  • li39aawcj6.pages.dev/915
  • li39aawcj6.pages.dev/87
  • li39aawcj6.pages.dev/503
  • li39aawcj6.pages.dev/9
  • li39aawcj6.pages.dev/362
  • li39aawcj6.pages.dev/596
  • wzory na potęgi i pierwiastki